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Abstract

We study a composite piezoelastic plate in cylindrical bending. The plate is composed of perfectly bonded substrate

and piezoelastic layers. We assume a plane state of strain; the plate mid-plane deforms into a cylindrical surface

perpendicular to, and the electric field vector lies in, the (x; z)-plane. We utilize Bruno Boley�s method for two-

dimensional thermoelastic problems: Boley introduced an expansion of the Airy stress function and a step-by-step

solution for each term. Furthermore, he discussed relations to strength-of-material theories.

For the piezoelastic problem we apply Boley�s method to the charge equations of electrostatics. The electric potential

is expanded and each term is calculated using a step-by-step procedure. Use of Boley�s method is facilitated by the

capabilities of modern symbolic computer codes. We solve the problem for an arbitrary distribution of strain first; then

we consider the variation of displacements in the form of a third order power series expansion in the z-direction.
Strength-of-material theories of different approximation levels are finally extracted, for which the level of approxi-

mation for the mechanical and electric field is not independent.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the last few decades piezoelastic materials have become prominent in the fields of mechatronics,

structronic systems and electro-mechanics, see Tani et al. (1998) or Tzou (1998) for reference. Piezoelectric

solids are utilized to realize distributed actuators and sensors for vibration control of flexible structures, cf.

Rao and Sunar (1994). In the high-end technological concept of ‘‘intelligent’’ or ‘‘smart’’ structures, piezo-

electric sensors and actuators serve as integrated parts of the structure and are combined with automatic
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control systems, such that the structure is capable of reacting to external disturbances similar to an

intelligent being. Frequently, smart structures are realized by means of thin piezoelastic layers equipped

with electrodes mounted at their surfaces. These layers are embedded in or attached to substrate layers,

resulting in a laminate structure. Applying an electric potential difference at the electrodes, an electric field
emerges within the piezoelectric layer due to the converse piezoelectric effect, generally resulting in

deformation or mechanical stress. Conversely, a deformation of the structure produces an electric field

within the piezoelectric layers. This latter effect is called the direct piezoelectric effect. The piezoelectric

effects result in a coupling between mechanical and electrical fields. It is important for practical problems,

e.g. in the field of active control of structures, to include electro-mechanical coupling into the modeling in

order to obtain an acceptable level of accuracy.

A crucial point in the modeling of piezoelectric laminates is to choose an appropriate approximation for

the thickness distribution of the displacement and the electric potential. In order to incorporate the vari-
ation of mechanical fields and electric fields accurately, numerous theories have been developed. In

equivalent single layer theories displacements are expanded into power series in the thickness direction, see

Reddy (1989) for the non-piezoelastic case. Electrical fields for each layer are also expanded into power

series in the thickness direction with terms up to the third order, see e.g. Tiersten (1993), Yang and Batra

(1994) and Yang (1999). Different approaches can be found in Fernandes and Pouget (2001), accounting for

thickness variations by means of harmonic functions, or in Batra and Vidoli (2002), where Legendre

polynomials are used. Also, discrete layerwise theories and hybrid or mixed formulations can be widely

found in the literature, for example Tzou and Ye (1996), Lee and Saravanos (1997) and Mitchell and Reddy
(1995).

In the present paper we restrict our attention to equivalent single layer theories using expansions of

displacements into power series. Given the order of the approximation for the displacement, we seek an

appropriate expansion of the electric potential inside each piezoelectric layer. Both the order of the

expansion and the basis functions of the expansion should be chosen to result in a consistent electrome-

chanically coupled theory. To find appropriate approximations for the electric potential we use an elegant

and valuable method, which was originally developed by Bruno Boley, see Boley (1956) and Boley and

Weiner (1960). Boley�s method is a general analytical successive-approximation method for the solution of
linear partial differential equations. The method is applicable when solutions are desired for bodies with one

dimension small compared to the others, as pointed out by Boley himself. Originally this method was

applied to two-dimensional thermoelastic problems.

In the present paper we consider the cylindrical bending of moderately thick laminated plates. We apply

Boley�s method to the charge equations of electrostatics. The electric potential is expanded and each term is

calculated by a step-by-step procedure. Solving this problem by Boley�s method is straightforward, and the

use of Boley�s method is facilitated by the capabilities of modern symbolic computer codes. We solve the

problem for an arbitrary distribution of strain in a first step. Then we consider the variation of displace-
ments in the form of a power series expansion with respect to the thickness direction. Terms up to the third

order are taken into account such that the classical theory and the first order, the second order and the third

order shear deformation theories are represented.

A cascade of consistent strength-of-material theories of different approximation levels is finally extracted

by taking into account the relative thinness of the piezoelastic layers as a characteristic parameter. We

consider the Kirchhoff theory and the Reissner–Mindlin theory as special examples (Kirchhoff, 1850;

Reissner, 1944, 1945; Hencky, 1947; Mindlin, 1951). Two principal results are derived. The first of the

principal results obtained are theories and formulas for the analysis of this type of structure, which can be
used to incorporate the coupling by means of effective stiffness parameters. These theories leave the formal

structure of the mechanical theory unchanged. In case of very thin piezoelastic layers a sufficient accuracy is

obtained, see Krommer and Irschik (1999) and Krommer (2001). The second of the principal results, which

comes into the play for moderately thick piezoelastic layers, are appropriate approximations for the
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thickness distribution of the electric potential inside a piezoelastic layer. In combination with variational

principles consistent strength-of-material theories can be derived, which also include field equations for the

electric potential, cf. Krommer and Irschik (2002). To the opinion of the authors these principal results

should be considered in the modeling of piezoelastic laminates.
2. Mathematical modeling

For a material with the symmetry properties of an orthorhombic system of class 2 mm, the linearized

three-dimensional constitutive relations for the electric displacement vector can be written in technical

notations as
Dx
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see Eringen and Maugin (1990). Consider a composite plate with the reference surface in the (x; y)-plane.
The deformation is assumed to take place in the (x; z)-plane only, resulting in a plane state of strain. The

strain components eyy , cxy , cyz therefore vanish and the electric field vector lies in the (x; z)-plane. We refer to

an arbitrary piezoelastic layer located at z1 6 z6 z2 in the remainder of this paper. The non-vanishing

components of the electric displacement vector Dx, Dz in this layer are
Dx ¼ exzcxz þ �xEx Dz ¼ exexx þ ezezz þ �zEz ð2Þ
with the piezoelectric coefficients and the electric permittivites
exz ¼ e15 ex ¼ e31 ez ¼ e33 �x ¼ �11 �z ¼ �33 ð3Þ
With the aid of the two-dimensional charge equation of electrostatics
oDx

ox
þ oDz

oz
¼ 0 ð4Þ
a second order linear partial differential equation for the electric potential /, which defines the electric field
as its negative gradient, is found
�x
o2/
ox2

þ �z
o2/
oz2

¼ ex
oexx
oz

þ exz
ocxz
ox

þ ez
oezz
oz

ð5Þ
Note that material parameters have been assumed to be constant within the layer.
3. Method of solution

To find a solution of Eq. (5) we apply a method originally developed by Bruno Boley for thermoelastic

problems, see Boley (1956). We write the governing equation for the electric potential as
ðD/x þ D/zÞ/ðx; zÞ ¼ D/exexxðx; zÞ þ D/exzcxzðx; zÞ þ D/ezezzðx; zÞ ð6Þ
where the differential operators, which contain derivatives with respect to one coordinate only, are defined
by
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D/x ¼ �x
o2

ox2
D/z ¼ �z

o2

oz2
D/ex ¼ ex

o

oz
D/exz ¼ exz

o

ox
D/ez ¼ ez

o

oz
ð7Þ
We now seek a solution for the electric potential in the form
/ðx; zÞ ¼
X1
i¼0

/iðx; zÞ ð8Þ
Inserting Eq. (8) into Eq. (6) we find
½ðD/x þ D/zÞ/0� þ ½D/z/1 � D/exexx� þ ½D/z/2 � D/exzcxz� þ ½D/z/3 � D/ezezz�

þ ½D/z/4 þ D/xð/1 þ /2 þ /3Þ� þ
X1
i¼5

½D/z/i þ D/x/i�1� ¼ 0 ð9Þ
where the functions /iðx; zÞ are assumed to be governed by
ðD/x þ D/zÞ/0 ¼ 0 D/z/1 ¼ D/exexx D/z/2 ¼ D/exzcxz D/z/3 ¼ D/ezezz
D/z/4 ¼ �D/xð/1 þ /2 þ /3Þ D/z/i ¼ �D/x/i�1 i ¼ 5; 6; 7; . . . ð10Þ
The definition of the portions /i of the electric potential / is not unique. The motivation for the above

manner of choosing the functions /i will become obvious in the next section. It remains to formulate the

boundary conditions. Extension of the plate in x-direction is L and the total thickness is h. The piezoelastic
layer, which is perfectly bonded to the laminate, has a thickness c ¼ z2 � z1. Its upper face and its lower face

are electroded. At the upper face a constant electric potential is prescribed and the lower face is grounded.

The boundary conditions at z ¼ z1, z2 are
z ¼ z1 : / ¼ /U z ¼ z2 : / ¼ 0 ð11Þ
The faces at x ¼ 0; L are not electroded, thus electric displacement free boundary conditions have to be

satisfied
x ¼ 0; L : Dx ¼ 0 () �x
o/
ox

¼ exzcxz ð12Þ
The electric boundary conditions at z ¼ z1, z2 are taken as
z ¼ z1 : /0 ¼ /U z ¼ z2 : /0 ¼ 0 z ¼ z1; z2 : /i ¼ 0; i ¼ 1; 2; 3; . . . ð13Þ
From Eq. (10) it follows that the functions /i, i ¼ 1; 2; 3; . . ., cannot be adjusted to the boundary conditions

at x ¼ 0; L. These latter boundary conditions are therefore accounted for by means of /0 in the form
�x
o/0

ox
¼ exzcxz �

X1
i¼1

�x
o/i

ox
ð14Þ
4. Solution for the electric potential

In order to simplify the following calculations, we assume the origin of the thickness coordinate to be

located at the location of the upper electrode of the layer. Hence z1 ¼ 0 and z2 ¼ c. We split the solution for

/0 into two parts. The first part /01 accounts for the non-homogenous boundary conditions at z ¼ 0; c,
whereas the second part /02 accounts for the non-homogenous boundary conditions at x ¼ 0; L. /02 cannot

be calculated as long as all the other terms of the expansion have been calculated. We therefore consider /01
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in a first step of the solution procedure. The solution for /01 corresponds to the simple model of a

capacitance. We have
/01ðzÞ ¼ /U 1
�

� z
c

� ��
ð15Þ
In many practical applications of piezoelastic structures, the approximation of Eq. (15) for the electric

potential is used, neglecting the influence of the direct piezoelastic effect. Due to Tiersten (1969) this

approximation is denoted as small piezoelectric coupling.

We proceed by calculating the solution for the first term, the second term and the third term of the series

expansion /1, /2 and /3. These terms are denoted as the elementary influences of the axial normal strain exx,
of transverse shear strain cxz and of transverse normal strain ezz. The governing ordinary differential

equations are D/z/1 ¼ D/exexx, D/z/2 ¼ D/exzcxz and D/z/3 ¼ D/ezezz, and the Dirichlet boundary conditions
at z ¼ 0; c are homogenous. The solutions are
�z
ex
/1 ¼

Z c

0

exx d�z�
z
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� �Z c

0

exx d�z ð16aÞ
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ð16cÞ
Summing up the three terms of Eq. (16), the electric potential distribution we obtain is a solution of the

charge equation of electrostatics, in which the axial component Ex of the electric field vector is neglected.
Due to this fact we have denoted the distributions of Eq. (16) as elementary influences of strain compo-

nents. In the next section the applicability of these elementary solutions in connection with strength-

of-material theories will be discussed.

To incorporate the influence of Ex we calculate the fourth term of the series expansion, which is governed

by D/z/4 ¼ �D/xð/1 þ /2 þ /3Þ. It is useful to split the solution for /4 into three parts, where each part

accounts for one of the elementary solutions. In this sense /4 corrects the elementary solution with respect

to the influence of Ex.
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ex
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Obviously derivatives with respect to the axial coordinate of two orders higher than in the elementary

solution are present in the solutions of Eq. (17). For that reason the three parts of /4 are denoted as second

order corrections of the influences of the different components of the strain tensor.

The terms of the series expansion for the electric potential were calculated by means of modern symbolic
computer codes. Calculation of higher order corrections is straightforward; we can expect subsequently

higher order corrections, which contain higher order derivatives with respect to the axial coordinate for the

influence of the components of the strain tensor. The difficult task in finding the exact solution of the

problem is to find a solution for /02, which accounts for the non-homogenous boundary conditions at

x ¼ 0; L. Thus the solution of a homogenous linear partial differential equation with non-homogenous

boundary conditions has to be calculated. However, for a relatively thin structure, the influence of the latter

non-homogenous boundary conditions can be intuitively expected to be restricted to the vicinity of the

boundary by means of an electric analog to Saint-Venant�s principle. This was also noted by Boley (1956)
for the thermal problem. In order to justify this assumption the next section is devoted to the application of

the approximations for the electric potential to strength-of-material theories.
5. Relations to strength-of-material theories

Relations to strength-of-material theories are established in this section. We consider a general for-

mulation for equivalent single layer theories, unifying the classical theory, the first order, the second order
and the third order shear deformation theories, (see Reddy (1989) for a classification.) The displacement is
uðx; zÞ ¼ u0 þ az
ow0

ox
þ bzwu þ kz2uu þ cz3hu wðx; zÞ ¼ w0 þ kzww þ cz2uw ð18Þ
Strain components can be calculated from Eq. (18) in the generalized form
exx ¼
ou0
ox

þ a
o2w0

ox2

�
þ b

owu

ox

�
zþ k

ouu

ox
z2 þ c

ohu
ox

z3 ezz ¼ kww þ 2czuw

cxz ¼ ð1þ aÞ ow0

ox
þ bwu þ k 2uu

�
þ oww

ox

�
zþ c 3hu

�
þ ouw

ox

�
z2 ð19Þ
Tracers a, b, k, c are introduced in Eqs. (18) and (19) to distinguish between different theories. The axial

strain exx is of order three in powers of z, the transverse shear strain cxz is of order two in powers of z, and ezz
is of order one in powers of z. In the following we consider /1, /2, /3 and /4, because /01 does not depend

on the distribution of strain. The electric potentials /1 and /41 which account for exx are presented in Table
1, where the non-dimensional coordinates g ¼ zc�1 and n ¼ xL�1 are used. D ¼ cL�1 denotes the thickness-

to-length ratio of the piezoelastic layer. Each line of Table 1 corresponds to one single power of z present in
the distribution of strain. The electric potentials /2 and /42 which account for cxz are presented in Table 2,

again separately for each individual power of z. ezz is taken into account by /3 and /43. These electric

potentials are presented in Table 3.

Subsequently, we specialize the results of Tables 1–3 to two of the most commonly used strength-

of-material theories. In the classical theory of plates, which is due to Kirchhoff (1850), we have a ¼ �1,

b ¼ k ¼ c ¼ 0, such that the electric potential becomes
�z
ex
/K ¼ 1

�
þ �x

�z

D2

12
ð1þ g� g2Þ o2

on2

�
o2w0

on2
D2

2
gð1� gÞ ð20Þ
The term with D2 enters via the second order correction calculated in Section 4. For a thin layer D2 � 1 can

be assumed. Hence we obtain
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Table 2

Distribution of electric potentials �ze�1
x ð/2 þ /42Þ
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Table 3

Distribution of electric potentials �ze�1
x ð/3 þ /43Þ

z0 0

z1
� 1

�
þ �x

�z

D2
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�z
ex
/K ¼ o2w0

on2
D2

2
gð1� gÞ ð21Þ
as an approximation for the electric potential. Neglecting the term with D2 � 1, the solution corresponds to

the solution of a simplified version of the charge equations of electrostatics, which is obtained by neglecting

the influence of Ex
Ex � 0 :
oDx

ox
þ oDz

oz
¼ 0 () �z

o2/
oz2

¼ �ex
o2w0

ox2
ð22Þ
The order of the approximation in Eq. (21) is equal to the order of the approximation of the displacement

plus one. The basis function is a polynomial of second order with the coefficients adjusted to give a trivial

value at g ¼ 0, 1. Not calculating higher terms in the expansion for the electric potential in Section 4 is

justified, because these terms would enter in Eq. (20) with higher orders in D, and therefore can be neglected
for the thin layer. It remains to discuss the influence of the non-homogenous boundary conditions at
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x ¼ 0; L. Obviously the electric boundary conditions at x ¼ 0; L cannot be satisfied by the approximation of

Eq. (21). Nevertheless, results calculated by using the approximation of Eq. (21) for a Bernoulli–Euler beam

are very good, except near x ¼ 0; L, as shown in Krommer (2001) by a comparison to electromechani-

cally coupled two-dimensional Finite Element-computations. Moreover, the mathematical form of the
Bernoulli–Euler beam theory is conserved by inserting the approximation of Eq. (21) into definitions of

stress resultants. The electromechanical coupling in this approximation comes into the play by means of

effective stiffness parameters. The result of Eq. (21) is the first of the principal results that we have men-

tioned in Section 1. For the classical theory, typically used for thin structures, we content ourselves with this

latter result, because of its sufficient accurateness.

In the first order shear deformation theory, developed by Reissner (1944, 1945), Hencky (1947) and

Mindlin (1951), we have b ¼ 1, a ¼ k ¼ c ¼ 0, such that the electric potential becomes
�z
ex
/RHM ¼ � 1
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þ �x

�z
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�
owu
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D
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�
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� c
2
Dgð1� gÞ ð23Þ
As for the classical theory it is appropriate to neglect the term with D2 � 1 in Eq. (23), because piezoelastic

layers are usually thin even in the first order shear deformation theory. Also higher order terms do not have
to be accounted for. We find the following approximation for the electric potential distribution by

neglecting D2 � 1 in Eq. (23):
�z
ex
/RHM ¼ � owu

on

�
þ exz

ex

o2w0

on2
D
c

�
þ owu

on

��
c
2
Dgð1� gÞ ð24Þ
The solution of Eq. (24) corresponds to the solution of the charge equation of electrostatics, in which Ex is

neglected
Ex � 0 :
oDx

ox
þ oDz

oz
¼ 0 () �z

o2/
oz2

¼ ex
owu

ox
þ exz

o2w0

ox2

�
þ owu

ox

�
ð25Þ
In order to check the applicability of the approximation of Eq. (24), the approximation can be inserted into

the definition of stress resultants for the first order shear deformation theory. This latter procedure changes

the mathematical form of the first order shear deformation theory. Thus the approximation appears not to

be appropriate in this form. Neglecting additionally the influence of transverse shear strain in Eq. (24),

resulting in a solution corresponding to Dz ¼ const:, conserves the mathematical form of the first order

shear deformation theory, (see Krommer and Irschik (1999) for a detailed analysis). As for the classical
theory, effective stiffness parameters characterize the electromechanical coupling. However, such a theory

has a number of disadvantages. Most important electric boundary conditions at x ¼ 0; L cannot be satisfied;

thus electric charge is not conserved. For the first order shear deformation theory it is no longer acceptable

not to account for the boundary conditions at x ¼ 0; L. Nevertheless, in context of strength-of-material

theories, calculating /02 is not adequate. Eq. (24) indicates that an appropriate approximation of the

electric potential in the thickness direction should be a polynomial of second order in z, adjusted to give a

trivial value at g ¼ 0; 1. We conclude that in a piezoelastic laminate theory consistent with the first order

shear deformation theory, the electric potential should be taken as
/ðx; zÞ ¼ /U 1
�

� z
c

� ��
� vðxÞ z

c

� �
1

�
� z

c

� ��
ð26Þ
where the influence of the non-homogenous boundary conditions at z ¼ 0; c has been included. Field

equations and boundary conditions for vðxÞ can be obtained from variational principles, see Krommer and
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Irschik (2002). For the first order shear deformation theory, the approximation of Eq. (26) represents the

second principal result mentioned in Section 1.

5.1. Generalized approximation for the electric potential

In Section 1, two principle results were mentioned. The first of these results are theories and formulas for

the analysis of this type of composite structures, which can be used to incorporate the coupling by means of

effective stiffness parameters. For the classical theory and the first order shear deformation these theories

and formulas were discussed. In the context of the generalized equivalent single layer theory, given by

Eq. (18), approximations of this simple type can be easily derived from Tables 1–3 by neglecting terms

containing D2 � 1. By doing so we obtain
/apprðx; zÞ ¼ � ð1
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The second principal result was concerned with finding an appropriate expansion of the electric potential

inside each piezoelectric layer. For this latter expansion, both the order of the expansion and the basis

functions of the expansion should be chosen to result in a consistent electromechanically-coupled theory.

Eq. (26) gives the result for the first order shear deformation theory. For the generalized equivalent single
layer theory, the expansion follows directly from Eq. (27) by replacing all functions, which depend on the

axial coordinate, by arbitrary functions. The result reads as follows
/ðx; zÞ ¼ /U 1
�

� z
c

� ��
� ðð1þ aÞ þ aþ bþ cÞv2ðxÞ

z
c
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1

�
� z
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Eq. (28) represents the approximation sought in the present paper. Each term of order n and with the basis

function zn in the approximation for the normal strains is reflected by a term of order nþ 1 with basis

function gð1� gnÞ in the approximation for the electric potential, except terms of order zero, which have no

influence on the electric potential distribution. Each term of order n and with the basis function zn in the

approximation for the transverse shear strain is reflected by a term of order nþ 2 with basis function
gð1� gnþ1Þ in the approximation for the electric potential. Although we restricted our attention to

equivalent single layer theories, the results of this section are also valid for discrete layer-wise theories,

which apply the generalized displacement field of Eq. (18) to each individual layer. It is furthermore

interesting that in a layer-wise electromechanically-coupled theory the shear stress continuity condition at

the layer interface is not influenced by the electric field, because the axial component of the electric field

vector vanishes at the location of the electrode.
6. Conclusion

This paper sought to find appropriate approximations for the electric potential in cases, for which the
mechanical approximation for the displacement is given in advance. Particular focus evaluated equivalent
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single layer theories, which expand the thickness distribution of the displacement into power series with

terms up to the third order. For the sake of finding these appropriate approximations we utilized a method

that was originally developed by Bruno Boley for two-dimensional thermoelastic problems, which we

applied to the charge equation of electrostatics. We obtained two principal results. The first result was
formulas and theories, which conserve the mathematical form of the uncoupled theory. These theories

account for the influence of electromechanical coupling by means of effective stiffnesses, with the disad-

vantage that electric boundary conditions at x ¼ 0; L are not satisfied in general. The second result was

approximations for the electric potential, which when utilized in variational principles, result in consistent

electromechanically coupled laminate theories. These approximations can be utilized directly in discrete

layer-wise theories. Moreover, Boley�s method may be applied to higher-order mechanical theories and to

theories utilizing other basis functions. To the opinion of the authors the two principal results should be

considered in the modeling of piezoelastic laminates.
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