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Abstract

We study a composite piezoelastic plate in cylindrical bending. The plate is composed of perfectly bonded substrate
and piezoelastic layers. We assume a plane state of strain; the plate mid-plane deforms into a cylindrical surface
perpendicular to, and the electric field vector lies in, the (x,z)-plane. We utilize Bruno Boley’s method for two-
dimensional thermoelastic problems: Boley introduced an expansion of the Airy stress function and a step-by-step
solution for each term. Furthermore, he discussed relations to strength-of-material theories.

For the piezoelastic problem we apply Boley’s method to the charge equations of electrostatics. The electric potential
is expanded and each term is calculated using a step-by-step procedure. Use of Boley’s method is facilitated by the
capabilities of modern symbolic computer codes. We solve the problem for an arbitrary distribution of strain first; then
we consider the variation of displacements in the form of a third order power series expansion in the z-direction.
Strength-of-material theories of different approximation levels are finally extracted, for which the level of approxi-
mation for the mechanical and electric field is not independent.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the last few decades piezoelastic materials have become prominent in the fields of mechatronics,
structronic systems and electro-mechanics, see Tani et al. (1998) or Tzou (1998) for reference. Piezoelectric
solids are utilized to realize distributed actuators and sensors for vibration control of flexible structures, cf.
Rao and Sunar (1994). In the high-end technological concept of “intelligent” or “smart” structures, piezo-
electric sensors and actuators serve as integrated parts of the structure and are combined with automatic
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control systems, such that the structure is capable of reacting to external disturbances similar to an
intelligent being. Frequently, smart structures are realized by means of thin piezoelastic layers equipped
with electrodes mounted at their surfaces. These layers are embedded in or attached to substrate layers,
resulting in a laminate structure. Applying an electric potential difference at the electrodes, an electric field
emerges within the piezoelectric layer due to the converse piezoelectric effect, generally resulting in
deformation or mechanical stress. Conversely, a deformation of the structure produces an electric field
within the piezoelectric layers. This latter effect is called the direct piezoelectric effect. The piezoelectric
effects result in a coupling between mechanical and electrical fields. It is important for practical problems,
e.g. in the field of active control of structures, to include electro-mechanical coupling into the modeling in
order to obtain an acceptable level of accuracy.

A crucial point in the modeling of piezoelectric laminates is to choose an appropriate approximation for
the thickness distribution of the displacement and the electric potential. In order to incorporate the vari-
ation of mechanical fields and electric fields accurately, numerous theories have been developed. In
equivalent single layer theories displacements are expanded into power series in the thickness direction, see
Reddy (1989) for the non-piezoelastic case. Electrical fields for each layer are also expanded into power
series in the thickness direction with terms up to the third order, see e.g. Tiersten (1993), Yang and Batra
(1994) and Yang (1999). Different approaches can be found in Fernandes and Pouget (2001), accounting for
thickness variations by means of harmonic functions, or in Batra and Vidoli (2002), where Legendre
polynomials are used. Also, discrete layerwise theories and hybrid or mixed formulations can be widely
found in the literature, for example Tzou and Ye (1996), Lee and Saravanos (1997) and Mitchell and Reddy
(1995).

In the present paper we restrict our attention to equivalent single layer theories using expansions of
displacements into power series. Given the order of the approximation for the displacement, we seek an
appropriate expansion of the electric potential inside each piezoelectric layer. Both the order of the
expansion and the basis functions of the expansion should be chosen to result in a consistent electrome-
chanically coupled theory. To find appropriate approximations for the electric potential we use an elegant
and valuable method, which was originally developed by Bruno Boley, see Boley (1956) and Boley and
Weiner (1960). Boley’s method is a general analytical successive-approximation method for the solution of
linear partial differential equations. The method is applicable when solutions are desired for bodies with one
dimension small compared to the others, as pointed out by Boley himself. Originally this method was
applied to two-dimensional thermoelastic problems.

In the present paper we consider the cylindrical bending of moderately thick laminated plates. We apply
Boley’s method to the charge equations of electrostatics. The electric potential is expanded and each term is
calculated by a step-by-step procedure. Solving this problem by Boley’s method is straightforward, and the
use of Boley’s method is facilitated by the capabilities of modern symbolic computer codes. We solve the
problem for an arbitrary distribution of strain in a first step. Then we consider the variation of displace-
ments in the form of a power series expansion with respect to the thickness direction. Terms up to the third
order are taken into account such that the classical theory and the first order, the second order and the third
order shear deformation theories are represented.

A cascade of consistent strength-of-material theories of different approximation levels is finally extracted
by taking into account the relative thinness of the piezoelastic layers as a characteristic parameter. We
consider the Kirchhoff theory and the Reissner—Mindlin theory as special examples (Kirchhoff, 1850;
Reissner, 1944, 1945; Hencky, 1947; Mindlin, 1951). Two principal results are derived. The first of the
principal results obtained are theories and formulas for the analysis of this type of structure, which can be
used to incorporate the coupling by means of effective stiffness parameters. These theories leave the formal
structure of the mechanical theory unchanged. In case of very thin piezoelastic layers a sufficient accuracy is
obtained, see Krommer and Irschik (1999) and Krommer (2001). The second of the principal results, which
comes into the play for moderately thick piezoelastic layers, are appropriate approximations for the
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thickness distribution of the electric potential inside a piezoelastic layer. In combination with variational
principles consistent strength-of-material theories can be derived, which also include field equations for the
electric potential, cf. Krommer and Irschik (2002). To the opinion of the authors these principal results
should be considered in the modeling of piezoelastic laminates.

2. Mathematical modeling

For a material with the symmetry properties of an orthorhombic system of class 2 mm, the linearized
three-dimensional constitutive relations for the electric displacement vector can be written in technical
notations as

8.\’)(
D, 0 0 0 0 a5 0] en 0 07[E
Dy = 0 0 0 €4 0 0 = + 0 €22 0 Ey (1)
Dz €3] €3 €33 0 0 0 /}Z 0 0 €33 Ez

yxy

see Eringen and Maugin (1990). Consider a composite plate with the reference surface in the (x, y)-plane.
The deformation is assumed to take place in the (x,z)-plane only, resulting in a plane state of strain. The
strain components ¢y, 7,,, 7,, therefore vanish and the electric field vector lies in the (x, z)-plane. We refer to
an arbitrary piezoelastic layer located at z; <z <z, in the remainder of this paper. The non-vanishing
components of the electric displacement vector D,, D, in this layer are

Dx = €Yy + EXEX Dz = exéyy + €8 + 6z[;z (2)
with the piezoelectric coefficients and the electric permittivites

e:=e5 e, =e e =en € =€ €= (3)
With the aid of the two-dimensional charge equation of electrostatics

oD, oD.

ox oz

a second order linear partial differential equation for the electric potential ¢, which defines the electric field
as its negative gradient, is found

% % 06, .. Je.,
R e (5)

Note that material parameters have been assumed to be constant within the layer.

0 4)

3. Method of solution
To find a solution of Eq. (5) we apply a method originally developed by Bruno Boley for thermoelastic
problems, see Boley (1956). We write the governing equation for the electric potential as
(Dd)x + ngZ)‘z)(x’Z) = Dd)&xsx)»‘(x»z) + Dtbsxzyxz(xvz) + D¢82822(xvz) (6)

where the differential operators, which contain derivatives with respect to one coordinate only, are defined
by
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Dpmel el ppcel Dp—enl Dy—el (7)
¢x = €Ex o2 9z = €2 o2 pex — €Ex oz pexz = Exz ox pez = €z oz

We now seek a solution for the electric potential in the form
¢(X7Z) = Z¢[(X7Z) (8)
=0

Inserting Eq. (8) into Eq. (6) we find

[(Dgx + Dyz) o] + [Dgzpy — Dpexs] + [Dpetpy — D] + [Dgpzpy — Dszezz]

oo

+ [Dgzpy + Dyu(Py + by + ¢3)] + Z[D¢Z¢i +Dyep; 1] =0 9)

i=5
where the functions ¢,(x,z) are assumed to be governed by

(Dqu +Dq§z)¢0 =0 D(/)z¢1 - D¢&X8XX D¢>z¢2 - Dd)axzyxz D¢z¢3 - Dd)rzgzz
Dy.py = =Dy + ¢ + ¢3) Dy = —Dyetpy i=5,6,7,... (10)

The definition of the portions ¢, of the electric potential ¢ is not unique. The motivation for the above
manner of choosing the functions ¢; will become obvious in the next section. It remains to formulate the
boundary conditions. Extension of the plate in x-direction is L and the total thickness is 4. The piezoelastic
layer, which is perfectly bonded to the laminate, has a thickness ¢ = z, — z;. Its upper face and its lower face
are electroded. At the upper face a constant electric potential is prescribed and the lower face is grounded.
The boundary conditions at z = zj, z, are

z=z1:p=¢" z=2z:¢=0 (11)

The faces at x = 0, L are not electroded, thus electric displacement free boundary conditions have to be
satisfied

0
x:O,L:Dx:0<:)ex—¢:exzyxz (12)
Ox
The electric boundary conditions at z = z;, z, are taken as
z=z1:py=¢" z=2:¢y=0 z=1z,,2:¢,=0, i=12.73,... (13)

From Eq. (10) it follows that the functions ¢,, i = 1,2, 3, ..., cannot be adjusted to the boundary conditions
at x = 0, L. These latter boundary conditions are therefore accounted for by means of ¢, in the form

0y o~ 99,
U = 14
€x ax Cxz / Xz ;EX ax ( )

4. Solution for the electric potential

In order to simplify the following calculations, we assume the origin of the thickness coordinate to be
located at the location of the upper electrode of the layer. Hence z; = 0 and z, = ¢. We split the solution for
¢, into two parts. The first part ¢, accounts for the non-homogenous boundary conditions at z =0, ¢,
whereas the second part ¢, accounts for the non-homogenous boundary conditions at x = 0, L. ¢, cannot
be calculated as long as all the other terms of the expansion have been calculated. We therefore consider ¢y,
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in a first step of the solution procedure. The solution for ¢, corresponds to the simple model of a

capacitance. We have
z

da(:)=¢"(1-(2)) (15)

c

In many practical applications of piezoelastic structures, the approximation of Eq. (15) for the electric
potential is used, neglecting the influence of the direct piezoelastic effect. Due to Tiersten (1969) this
approximation is denoted as small piezoelectric coupling.

We proceed by calculating the solution for the first term, the second term and the third term of the series
expansion ¢,, ¢, and ¢;. These terms are denoted as the elementary influences of the axial normal strain ¢,,,
of transverse shear strain y,, and of transverse normal strain ¢,.. The governing ordinary differential
equations are Dy.¢p; = Dyuére, Dy = Dz}, and Dy.¢p3 = Dy-¢.., and the Dirichlet boundary conditions
at z =0, c are homogenous. The solutions are

EZ B c _ E c _

;¢1_/0 b dz (c)/o b dz (16a)
€, e:0|/z o = z ¢ _ c

0= 2| C) [ recdz= [Cnzaz- ()] [Dnucz- [z (16b)
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Summing up the three terms of Eq. (16), the electric potential distribution we obtain is a solution of the
charge equation of electrostatics, in which the axial component E, of the electric field vector is neglected.
Due to this fact we have denoted the distributions of Eq. (16) as elementary influences of strain compo-
nents. In the next section the applicability of these elementary solutions in connection with strength-
of-material theories will be discussed.

To incorporate the influence of E, we calculate the fourth term of the series expansion, which is governed
by Dy.¢py = —Dyc(¢, + ¢5 + ¢3). It is useful to split the solution for ¢, into three parts, where each part
accounts for one of the elementary solutions. In this sense ¢, corrects the elementary solution with respect
to the influence of E,.
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Obviously derivatives with respect to the axial coordinate of two orders higher than in the elementary
solution are present in the solutions of Eq. (17). For that reason the three parts of ¢, are denoted as second
order corrections of the influences of the different components of the strain tensor.

The terms of the series expansion for the electric potential were calculated by means of modern symbolic
computer codes. Calculation of higher order corrections is straightforward; we can expect subsequently
higher order corrections, which contain higher order derivatives with respect to the axial coordinate for the
influence of the components of the strain tensor. The difficult task in finding the exact solution of the
problem is to find a solution for ¢,,, which accounts for the non-homogenous boundary conditions at
x =0,L. Thus the solution of a homogenous linear partial differential equation with non-homogenous
boundary conditions has to be calculated. However, for a relatively thin structure, the influence of the latter
non-homogenous boundary conditions can be intuitively expected to be restricted to the vicinity of the
boundary by means of an electric analog to Saint-Venant’s principle. This was also noted by Boley (1956)
for the thermal problem. In order to justify this assumption the next section is devoted to the application of
the approximations for the electric potential to strength-of-material theories.

5. Relations to strength-of-material theories

Relations to strength-of-material theories are established in this section. We consider a general for-
mulation for equivalent single layer theories, unifying the classical theory, the first order, the second order
and the third order shear deformation theories, (see Reddy (1989) for a classification.) The displacement is

u(x,z) = up + ocz? + B, + 22, + 9220, w(x,z) = wo + Az, + 2o, (18)
X
Strain components can be calculated from Eq. (18) in the generalized form
~ Ouy o%*wy oy, 00, , 00, 4 o
gxx_a_x+ (aé_)CZ—’_B ox Z+j' axz +ya_xz 822—/“lpw+2/2(pw
_ Owyo o, 09,
/xz_(1+a)§+ﬁlﬂu+}~(2(pu+§>z+)}<39u+ » z (19)

Tracers a, f, 4, y are introduced in Egs. (18) and (19) to distinguish between different theories. The axial
strain ¢, is of order three in powers of z, the transverse shear strain y,, is of order two in powers of z, and ¢,
is of order one in powers of z. In the following we consider ¢, ¢,, ¢; and ¢,, because ¢, does not depend
on the distribution of strain. The electric potentials ¢, and ¢,; which account for ¢,, are presented in Table
1, where the non-dimensional coordinates # = zc¢~! and & = xL~! are used. 4 = c¢L~! denotes the thickness-
to-length ratio of the piezoelastic layer. Each line of Table 1 corresponds to one single power of z present in
the distribution of strain. The electric potentials ¢, and ¢,, which account for y . are presented in Table 2,
again separately for each individual power of z. ¢, is taken into account by ¢; and ¢,;. These electric
potentials are presented in Table 3.

Subsequently, we specialize the results of Tables 1-3 to two of the most commonly used strength-
of-material theories. In the classical theory of plates, which is due to Kirchhoff (1850), we have o = —1,
B =7 =1y =0, such that the electric potential becomes

€ e, A * ) 0wy A?
@¢K:{1+Qu(l+n_"2)e;§2}ag“;)2"(1_") (20)

The term with 4° enters via the second order correction calculated in Section 4. For a thin layer 4> < 1 can
be assumed. Hence we obtain
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Table 1
Distribution of electric potentials e.e;'(¢; + ¢uy)
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Table 2
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Table 3
Distribution of electric potentials eze;l(q&3 + du3)
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z! €, A P e A
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as an approximation for the electric potential. Neglecting the term with A4?> < 1, the solution corresponds to
the solution of a simplified version of the charge equations of electrostatics, which is obtained by neglecting
the influence of E,
oD, 0D ¢ ?wo
E ~0:— I 0= et = —0,——
> & “% - "
The order of the approximation in Eq. (21) is equal to the order of the approximation of the displacement
plus one. The basis function is a polynomial of second order with the coefficients adjusted to give a trivial
value at n = 0, 1. Not calculating higher terms in the expansion for the electric potential in Section 4 is
justified, because these terms would enter in Eq. (20) with higher orders in 4, and therefore can be neglected
for the thin layer. It remains to discuss the influence of the non-homogenous boundary conditions at

(22)
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x = 0, L. Obviously the electric boundary conditions at x = 0, L cannot be satisfied by the approximation of
Eq. (21). Nevertheless, results calculated by using the approximation of Eq. (21) for a Bernoulli-Euler beam
are very good, except near x = 0, L, as shown in Krommer (2001) by a comparison to electromechani-
cally coupled two-dimensional Finite Element-computations. Moreover, the mathematical form of the
Bernoulli-Euler beam theory is conserved by inserting the approximation of Eq. (21) into definitions of
stress resultants. The electromechanical coupling in this approximation comes into the play by means of
effective stiffness parameters. The result of Eq. (21) is the first of the principal results that we have men-
tioned in Section 1. For the classical theory, typically used for thin structures, we content ourselves with this
latter result, because of its sufficient accurateness.

In the first order shear deformation theory, developed by Reissner (1944, 1945), Hencky (1947) and
Mindlin (1951), we have f =1, o = 2 =y = 0, such that the electric potential becomes

Gyrnv __[[ e o @0, e A 5 O e (Bw 4 DY,
e’ = [{1+ezl2(1+n Moarae T Tee Mg o ¢ e

C

x 5 4n(l —1) (23)

As for the classical theory it is appropriate to neglect the term with 4> < 1 in Eq. (23), because piezoelastic
layers are usually thin even in the first order shear deformation theory. Also higher order terms do not have
to be accounted for. We find the following approximation for the electric potential distribution by
neglecting 4*> < 1 in Eq. (23):

€& | RHM __ o, e (Pwed W, \]c
e—x¢ ——[ ¢ +€_x< o8 ;4' oz )}54"7(1—’7) (24)

The solution of Eq. (24) corresponds to the solution of the charge equation of electrostatics, in which £, is
neglected

2 2
oD, | D, Rp oy, eﬂ(awo aylu) 25)

Erbgta 0w =% T\ T
In order to check the applicability of the approximation of Eq. (24), the approximation can be inserted into
the definition of stress resultants for the first order shear deformation theory. This latter procedure changes
the mathematical form of the first order shear deformation theory. Thus the approximation appears not to
be appropriate in this form. Neglecting additionally the influence of transverse shear strain in Eq. (24),
resulting in a solution corresponding to D, = const., conserves the mathematical form of the first order
shear deformation theory, (see Krommer and Irschik (1999) for a detailed analysis). As for the classical
theory, effective stiffness parameters characterize the electromechanical coupling. However, such a theory
has a number of disadvantages. Most important electric boundary conditions at x = 0, L cannot be satisfied;
thus electric charge is not conserved. For the first order shear deformation theory it is no longer acceptable
not to account for the boundary conditions at x = 0, L. Nevertheless, in context of strength-of-material
theories, calculating ¢y, is not adequate. Eq. (24) indicates that an appropriate approximation of the
electric potential in the thickness direction should be a polynomial of second order in z, adjusted to give a
trivial value at n = 0, 1. We conclude that in a piezoelastic laminate theory consistent with the first order
shear deformation theory, the electric potential should be taken as

e = (1 (2)) -0 E) (- () 2

where the influence of the non-homogenous boundary conditions at z = 0,c¢ has been included. Field
equations and boundary conditions for y(x) can be obtained from variational principles, see Krommer and
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Irschik (2002). For the first order shear deformation theory, the approximation of Eq. (26) represents the
second principal result mentioned in Section 1.

5.1. Generalized approximation for the electric potential

In Section 1, two principle results were mentioned. The first of these results are theories and formulas for
the analysis of this type of composite structures, which can be used to incorporate the coupling by means of
effective stiffness parameters. For the classical theory and the first order shear deformation these theories
and formulas were discussed. In the context of the generalized equivalent single layer theory, given by
Eq. (18), approximations of this simple type can be easily derived from Tables 1-3 by neglecting terms

C()lltalllillg A << 1. By dOing SO wWe Obtaln
) 2 (_) ( B (_))
2 C C

*w *w oY e e
appr _ 1 €xz 0 0 uf1 Xz 2_Z
9 x,2) <( +9) e, 0x2 to Ox? +h Ox ( * e, 7 e, Pw

G0 e le. Wy, \c/z z\2
(T (145) 12 5E) S G - )
<6x<+ex>+26x ox2 ) 3 \¢ ¢

00 e le. Pp,\c*/z z\3
(e (1+ =) +3 =552 )5C) (- () 27
/<6x(+ex)+3ex 6x2>4 c< c 27)
The second principal result was concerned with finding an appropriate expansion of the electric potential
inside each piezoelectric layer. For this latter expansion, both the order of the expansion and the basis
functions of the expansion should be chosen to result in a consistent electromechanically-coupled theory.
Eq. (26) gives the result for the first order shear deformation theory. For the generalized equivalent single

layer theory, the expansion follows directly from Eq. (27) by replacing all functions, which depend on the
axial coordinate, by arbitrary functions. The result reads as follows

o(x.2) =" (1= (2)) — (1 +a) + a2+ p+0u0(2) (1= (5)) - u@(3) (1 _ (g)z)
- (2)(1- (5)) (28)

Eq. (28) represents the approximation sought in the present paper. Each term of order » and with the basis
function z” in the approximation for the normal strains is reflected by a term of order n + 1 with basis
function (1 — #") in the approximation for the electric potential, except terms of order zero, which have no
influence on the electric potential distribution. Each term of order n and with the basis function z" in the
approximation for the transverse shear strain is reflected by a term of order n + 2 with basis function
n(1 — ") in the approximation for the electric potential. Although we restricted our attention to
equivalent single layer theories, the results of this section are also valid for discrete layer-wise theories,
which apply the generalized displacement field of Eq. (18) to each individual layer. It is furthermore
interesting that in a layer-wise electromechanically-coupled theory the shear stress continuity condition at
the layer interface is not influenced by the electric field, because the axial component of the electric field
vector vanishes at the location of the electrode.

6. Conclusion

This paper sought to find appropriate approximations for the electric potential in cases, for which the
mechanical approximation for the displacement is given in advance. Particular focus evaluated equivalent
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single layer theories, which expand the thickness distribution of the displacement into power series with
terms up to the third order. For the sake of finding these appropriate approximations we utilized a method
that was originally developed by Bruno Boley for two-dimensional thermoelastic problems, which we
applied to the charge equation of electrostatics. We obtained two principal results. The first result was
formulas and theories, which conserve the mathematical form of the uncoupled theory. These theories
account for the influence of electromechanical coupling by means of effective stiffnesses, with the disad-
vantage that electric boundary conditions at x = 0, L are not satisfied in general. The second result was
approximations for the electric potential, which when utilized in variational principles, result in consistent
electromechanically coupled laminate theories. These approximations can be utilized directly in discrete
layer-wise theories. Moreover, Boley’s method may be applied to higher-order mechanical theories and to
theories utilizing other basis functions. To the opinion of the authors the two principal results should be
considered in the modeling of piezoelastic laminates.
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